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Abstract
Text-adventure games and text role-playing games are grand challenges for reinforcement learning game playing agents. Text
role-playing games are open-ended environments where an agent must faithfully play a particular character. We consider
the distinction between characters and actors, where an actor agent has the ability to play multiple characters. We present a
framework we call a thespian agent that can learn to emulate multiple characters along with a soft prompt that can be used to
direct it as to which character to play at any time. We further describe an attention mechanism that allows the agent to learn
new characters that are based on previously learned characters in a few-shot fashion. We show that our agent outperforms
the state of the art agent framework in multi-character learning and few-shot learning.
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1. Introduction
Text adventure games are those in which a player can
only interact with an interactive environment through
reading text descriptions of the environment and acting
by typing descriptions of actions. Text games present
a grand challenge for AI because they (a) are partially
observable; (b) have combinatorially large state spaces
consisting of all possible descriptive text strings; (c) have
combinatorially large action spaces in the order of bil-
lions of possible text commands; (d) require reasoning
about long-horizon causal dependencies; and (e) require
commonsense and narrative trope reasoning [1]. Text ad-
venture game playing has become a benchmark challenge
for reinforcement Learning (RL) agents [1, 2, 3, 4, 5, 6],
which play by exploring the environment and receiving
score based on how far they make it through the game.

Relatedly, table-top role playing games, such as Dun-
geons & Dragons, involve multiple players that interact
with textual descriptions of the environment as well as
dialogue with other players. While players may be moti-
vated by a quest or mission, table-top role playing games
are fundamentally open-ended, meaning that players can
interact with the environment and with each other in
ways that are not strictly dictated by a quest, mission,
or set of puzzles. Open-ended role-playing extends the
same challenges of text adventure games but removes the
environmentally-dictated reward structure. The predom-
inant question for open-ended role-playing is whether an
agent acts consistently with a given character definition.

Because there may be no explicit reward associated
with progression in open-ended role playing games, an
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Dungeon
You are in the Dungeon. It is dark and gloomy...
...
There is a skeleton here.
There is a path south, a path east, and a path west.
You have a sword, a shield, and a tattered map.
Previous action: Go west

Prompt: 
<0.1656, -0.2891, -0.2251, ..., -0.3157, 0.2262, 0.2698>
You are an adventurer

You hit the skeleton! The skeleton died!
...

As an adventurer, the best action
for me to take is hit skeleton

Action Thief Adventurer Rogue

hit skeleton
drop sword
pickpocket skeleton
go east
...

Figure 1: A Thespian Agent is capable of acting out a number
of different characters by being provided a prompt that indi-
cates which character it should emulate at the time. The agent
produces a probability distribution across all actions for each
prompt. Then, for the current character, the corresponding
distribution is then sampled to produce the chosen action.

agent must instead be trained to, at least, emulate partic-
ular character types such as “thief” or an “adventurer”,
each of which has different preferences for different ac-
tions depending on the situation.1

1This is a simplification of table-top role-playing games that can also
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In this paper we consider the distinction between char-
acter agents and actor agents. A character agent is trained
to act like one specific character; for all intents and pur-
poses it is that character and knows nothing else but
how to be that character. In contrast, an actor agent has
knowledge about how to play many different characters
and can receive instruction from an external source (for
example a movie director or a dungeon master) about
which character type to play. Furthermore, an actor can
leverage the character knowledge to learn to blend char-
acters with only a small amount of additional practice
(e.g., few-shot learning) without exhaustively re-training
from scratch. We will refer to actor agents as thespian
agents to distinguish between agents that learn to enact
multiple characters from the actor-critic reinforcement
learning architecture.

This paper considers two challenges. The first is to
train a single reinforcement learning agent model that
can switch between character types with a simple in-
struction. We present a new RL agent that can learn
to emulate multiple characters simultaneously with an
updated policy model that generates |𝐶| sets of action
distributions, where 𝐶 is a set of character classes. The
agent also learns a soft prompt that can later be provided
as a cue to emulate a specific character.

The second challenge is to be able to train a thespian
agent to learn new characters in a fraction of the training
time while maintaining performance in the previously
trained characters. We achieve this by adding an atten-
tion mechanism to the outputs of the the thespian agent,
which can learn how to blend the action probabilities of
different characters, thus learning a new character and a
new soft prompt.

To return to our character vs. actor metaphor, we now
have a thespian model that can simultaneously generate
different actions for different characters. This is equiva-
lent to a thespian thinking about how different characters
will respond to the same situation. The thespian agent re-
ceives direction in the form of a prompt indicating what
character to play. If the thespian needs to play a new
character that it has never played before it can learn a
new prompt for the new character much faster than if it
had to learn from scratch by leveraging what it already
knows about playing other characters.

We conduct experiments across two original charac-
ter types, a “thief” and an “adventurer” and demonstrate
the ability of a single thespian agent trained on both
characters to perform as well as separate baseline mod-
els trained to emulate individual characters. We show
that we can use a novel attention mechanism to learn a
third character that is a blend of the previously trained
characters in a few-shot fashion. This few-shot charac-
ter learning is 10x faster than baseline alternatives and

feature distinct character personalities and back-stories.

doesn’t degrade the performance of original characters.

2. Background and Related Work
The distinction between characters and actors have been
made before. Louchart and Aylett [7] consider an actor
agent one that makes a secondary assessment of its own
cognitive and emotional state. Riedl [8] consider an actor
agent one that doesn’t just reason about the best action
to convey a character but also incorporates directorial
goals. Si et al. [9] consider an actor agent one that reasons
about the cognitive state of other interlocutors in an
interactive game; they also referred to their agent as a
thespian. These prior works looked at acting as meta-
cognition, but agents could not represent more than one
character without retraining or reprogramming. While
our work can also be considered a form ofmeta-cognition,
our focus is on a single model trained to be able to reason
about and enact different characters.

2.1. Text Adventure Game Playing Agents
Text adventures are games in which the player must read
textual descriptions of the environment and describe their
actions with short text commands. Most text adventure
games have a narrative progression through puzzles to-
ward an ultimate goal or conclusion. Text based games
have shown great potential for use as Reinforcement
Learning benchmark environments [1, 2]. Ammanabrolu
and Riedl [3] proposed augmenting reinforcement learn-
ing with knowledge graphs as external memory about
world state. Ammanabrolu and Hausknecht [4] proposed
KG-A2C, which integrates knowledge graphs into the
actor-critic [10] RL framework. The Q*BERT agent [5]
further extended KG-A2C to incorporate the BERT [11]
language model into the model architecture. We build
on top of the KG-A2C family of models since they have
shown state-of-the-art performance. Other techniques
for playing textgames include GATA [6], which builds
a knowledge-graph based representation of the world
on top of a transformer-based agent, training through a
combination of RL and self-supervised learning.

2.2. Text-based Role Playing Agents
Whereas text adventure games have pre-defined progres-
sion toward a goal state, table-top role playing games
involve open-ended game play. We refer to text-based
environments that support open-ended game play as
text-based role playing to signify the interaction with the
environment through reading and writing text instead of
verbal interactions with other players and game masters.

The LIGHT environment [12] is a crowdsourced text-
based role playing game with a rich environment with



interactable NPCs, objects and locations, each with a
short paragraph description, demonstrating the value
of grounding in training agents that can not only act
but also converse successfully. Ammanabrolu et al. [13]
propose agents that can switch seamlessly between gen-
erating natural language and action declarations. These
agents can learn to play different characters when given
a motivation that includes character type and goal as part
of the input world state. This work is most similar to ours,
except our agents do not require explicit motivations or
goals beyond a learned character prompt.

Story Shaping [14] is a technique for training RL agents
to play text role-playing games wherein a story is con-
verted into a rich reward signal. The technique can be
used to train different characters, but can only train a
single agent to emulate a single character. Our character-
based reward strategy is related, but our rewards are
manually crafted instead of inferred from stories.

2.3. Few-Shot Adaptation
Large pre-trained Language models have emerged as
extremely powerful tools for NLP tasks[15, 16, 17]. How-
ever, a limitation of these powerful models is their size,
some with parameters numbering in the billions [17].
This makes them prohibitively expensive when it comes
to further training or fine-tuning. Low-Rank Adaptation
(LoRA) circumvents this by keeping the model frozen and
introducing trainable rank decomposition matrices. Our
proposed technique also freezes the core model and trains
additional layers on top, though the specific mechanics
needed for reinforcement learning are different.

Prompt-tuning also avoids the need to do further train-
ing on the model itself by introducing trainable, soft
prompts that learn an ideal input based on the desired
output [18]. [19] proposes pairing soft prompts with
an attention module to induce language models to per-
form different tasks. Using knowledge from a previously
trained task to improve learning on a new task has also
been explored by [20], their approach more focused on
generalization across simpler objectives and adaptation
to unseen environments.

3. Preliminaries

3.1. Textworlds as RL Testbeds
A text-adventure or text-based role playing game can be
modeled as a partially-observable Markov decision pro-
cess (POMDP) M = ⟨𝑆, 𝑇 , 𝐴, 𝜔, 𝑂, 𝑅, 𝛾 ⟩ where 𝑆 is the set
of ground truth world states, 𝐴 is the set of actions, 𝑇 is
the probability of transitioning from one state to another
given an executed action, 𝑅 is a reward function, 𝑂 is
the set of possible observations, 𝜔 is the probability of
observations given the ground truth world state, and 𝛾

is a parameter estimating the reward horizon [1]. In our
setting, we will use a deterministic transition function 𝑇,
which is common in text-based games. However, noth-
ing in our proposed technique strictly requires it. The
objective of reinforcement learning is to learn a policy,
𝜋 ∶ 𝑆 → 𝐴 that maps states to actions, such that taking
the action mapped to the current state and following the
policy henceforth maximizes expected reward.

3.2. LIGHT
Our agent is trained in the LIGHT environment [12], a
text world environment with a database of 1775 Non-
Player Characters (NPCs), 663 locations, and 3462 ob-
jects with rich text descriptions. Game maps can also
be handcrafted with specifically placed NPCs, locations
and objects. We create a map for our experiments such
that multiple character types can have relevant activi-
ties to perform, including interacting with objects and
NPCs. For example there are dragons for an “adventurer”
character to slay, and armor to don, whereas a “thief”
character can take money from the donations receptacle
in a sanctuary.

Our experiments use base character types of “Thief”
and “Adventurer”. We also associate rewards to different
actions for each character type. For example, a “Thief”
character agent is rewarded for obtaining a hidden dag-
ger, stealing, and other thief-like actions. Likewise, an
“Adventurer” character agent is rewarded for obtaining
a sword and armor from the armory and killing mon-
sters, and other adventurer-like actions. There is no
requirement that an agent do particular actions and no
prescribed order. This is equivalent to the Story Shaping
technique[14] , except the rewards are manual, which is
done to make more controlled experiments. Regardless
of character type, all games terminate when the agent
enters a particular, preset “goal room”, at which time
the agent receives a final reward that is smaller than the
others. The entire game map is provided in the appendix.

3.3. KG-A2C
We build off the KG-A2C agent framework [4], an
Advantage-Actor Critic architecture augmented with a
knowledge-graph based attention. KG-A2C’s space of
observations includes (a) text description of the room
the agent is in via the “look” command, (b) text descrip-
tions of the character’s inventory via the “inventory”
command, (c) the agent’s last command, and (d) feed-
back from the last command. The state observations are
concatenated and embedded using a recurrent GRU.

Simultaneously, the state observation is used to up-
date a knowledge graph of facts about the world that
have been observed to date. This includes facts and rela-
tions about rooms, objects in rooms, inventory items, etc.
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Figure 2: The Thespian Attention takes in the embedded observations and the stacked logits, calculating an attention score
per character for each observation. When training the Thespian Attention, the blue-shaded boxes indicate frozen modules
with red-shaded boxes being trainable modules.

This knowledge graph is then embedded using a graph
attention mechanism [21].

Advantage-actor critic networks [22] have two heads.
The actor head generates logit scores, one for each pos-
sible action, which can be converted to a probability
distribution via softmax and sampled to determine which
action the agent takes. The critic head estimates the util-
ity of the state. Actions are made up of verbs and optional
object names. The KG-A2C agent generates a verb, which
maps to a pre-defined template, and the generated object
name is used to populate the template.

4. The Thespian Agent
Building off the basic framework of KG-A2C we describe
how a single agent policy model can learn to emulate
multiple characters. To train a single model to emulate
different characters, it must be rewarded differently for
each character, which can confuse an agent unless it
has a way of disentangling the characters. Our thespian
agent architecture addresses this challenge in two ways.
First, we provide a means to learn soft character prompts.
These are unique codes that are associated with different
characters and can be provided as input to indicate which
character the agent should emulate. Second, we change
the actor and critic heads to generate sets of logit scores
for all learned characters. Thus the agent can reason
about which actions are best for each character, and we
can sample from the set of logits for which ever character

we want to execute. Figure 2(left, green box) shows the
thespian agent, focusing on the these two aspects.

4.1. Character Prompts
First, we allow for a soft character prompt to be learned.
Each prompt is associated with a different character the
model has been trained to emulate and induces the agent
to generate behavior that is consistent with the associ-
ated character. This is similar to the notion of the soft
prompt[18], which is like a regular prompt for LLMs but
given as an embedding instead of natural language. The
soft character prompt vector of values can be interpreted
as an instruction analogous to saying “I am in state x
and I am a Thief. My next action would be...” at the
embedding level.

Let P = [
p1...
p𝑛
] be a set of soft character prompts for

each character 𝑐𝑖 ∈ 𝐶 and let o be the embedded current
state observation. Initially, the prompts p𝑖 are empty,
initialized with random numbers. The internal state rep-
resentation 𝑠𝑖 for character 𝑐𝑖 is:

s𝑖 = 𝑊 𝑇
𝑖 × cat(o, p𝑖) (1)

where 𝑊 is a set of trainable weights.
The soft character prompts are learned as follows. Dur-

ing training, the agent will engage in reinforcement learn-
ing games as normal. In each game, the agent will be
provided with a different reward function for each charac-
ter 𝑐𝑖. That is, a thief will be rewarded for certain actions



and an adventurer will be rewarded for different actions.
The character, corresponding character reward function,
and character prompt p𝑖 are rotated each game to balance
the training of multiple characters. Over time, each soft
prompt is updated via gradient flow through 𝑊 such that
each unique prompt is associated with a particular way
in which the agent is rewarded.

4.2. Character-Specific Action Scores
We also modify the agent model’s actor and critic mod-
ules. The standard A2C framework produces logit scores
for each action. This vector of logit scores is traditionally
converted to a probability distribution with a softmax
layer and sampled to determine which action the agent
takes. Our thespian agent model instead produces a stack
of action logit scores. A softmax over this stack of logits
produces 𝑛 probability distributions, for 𝑛 characters.

The critic head is likewise modified to produce 𝑛 pre-
dicted utility scores, one for each character.

Thus, the agent is simultaneously determining which
action is best for each character and how good the current
state is from the perspective of each character.

At training time, the characters are rotated each game
and the 𝑖th set of logit scores is sampled to determine
the agent’s action, and the 𝑖th utility value is used to
compute character-specific advantage loss. The loss is
backpropagated through only the logits and utility used.

5. Thespian Agent Experiments
In this section we evaluate the thespian agent without
the additional few-shot learning attention mechanism
to determine the extent to which the agent can learn
more than one character at a time. We train a single
agent to emulate two characters: thief and adventurer.
We execute the agent in the same general environment
that has multiple opportunities for thief-specific actions
and adventurer-specific actions. The environment (see
Figure 5 in the Appendix) has a common starting room
and an exit room that terminates the game when the
agent enters it. There are a cluster of thief-specific and
adventurer-specific rewards clustered near the starting
room. The environment then branches with one branch
heading to areas that only contain thief-specific rewards
and another branch heading to areas that only contain
adventurer-specific actions.

The thespian agent is trained as follows. We create
empty prompts for thief and adventurer. We train on one
character reward, accompanied by the character prompt,
for two games, then switch to the next character reward
and character prompt for two more games. A game com-
pletes when the agent navigates to the exit room as de-
scribed in Section 3.2. We train for a total of 10,000 games

and use the checkpoint with the highest performance on
20 test game runs, split equally between each character.

We evaluate the agent in the same environment, exe-
cuting the agent with with each character prompt one
at a time. We measure the percentage of total character-
specific action opportunities the agent takes. We run
each character prompt for 100 games with different ini-
tialization seeds and take the average result.

We compare to a baseline KG-A2C trained with the
same training method (but without the prompts since the
base KG-A2C architecture would not understand them),
as well as the thespian agent with a prompt made of
random numbers.

Table 1 shows the results. The base KG-A2C when
trained only on thief rewards or adventurer rewards is
able to achieve most of the character-specific score. The
base agent trained on one character rarely attempts to
perform actions specific to another character, which is to
be expected and demonstrates that the environment set-
ting is fair if the objective were to only train one character
at a time. However, when the base KG-A2C is trained
with both character rewards, the agent’s performance in
one character suffers. The resulting agent also attempts
to get all rewards, regardless of character, thus failing to
differentiate between characters.

In comparison, thespian agent uses a single model and
that single model scores a high thief score when given the
thief prompt and a high adventurer score when given the
adventurer prompt. The thespian agent rarely attempts
actions that are specific to a non-prompted character.
Despite being trained on multiple character rewards, the
thespian agent achieves performance equivalent to the
base model trained on only one character. Figure 3 shows
the learning curve of the single thespian agent training
on both characters versus a single base KG-A2C training
on both characters using the same character rotation
scheme; KG-A2C gets trapped in a local maximum.

When the thespian agent is given a random prompt, it
scores poorly as either character. There may be a bias in
the environment that leads the agent to prefer the branch
that contains more adventurer score, explaining why the
agent obtains more adventurer rewards.

6. Few-Shot Learning with
Thespian Attention

The thespian agent is a single agent that can be trained
to emulate many different characters by providing one
of the learned prompts as a cue for how to behave in an
open-ended fashion. In this section we consider the ques-
tion of whether a pre-trained thespian agent can learn
a new character that draws on knowledge of previously
learned characters.
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Figure 3: We see the thespian agent achieves convergence
after about 4,000 episodes where the KG-A2C still struggles to
perform even after 10,000 episodes. The thief has a maximum
score of 52 where the adventurer has a maxium score of 57.

Table 1
Performance of a KG-A2C trained in different conditions and
a single thespian model responding to different prompts.

Experiment Thief
score %

Thief
std.dev

Adv
score %

Adv
std.dev

Avg.
Game
Steps

Base KG-A2C

Thief-Only 93.2 9.3 3.8 0 24.7

Adv-Only 3.8 0 99.3 4.8 33.4

Both trained 88.2 10.3 68.6 7.8 33.1

Thespian agent

Thief Prompt 92.9 17.4 3.8 0 22.1

Adv. Prompt 4.3 0 99.1 11.1 32.2

Rand. Prompt 10.7 12.8 72.7 37.5 26.5

Given a thespian agent that has been trained on 𝑛
characters, training the 𝑛+1th character poses challenges.
Training on the 𝑛+1th character, with a new reward runs
the risk that the agent forgets the previous 𝑛 characters.
This is a commonly known phenomenonwith fine-tuning
any type of model. It is typically a desired phenomenon
when wewish to update the model to a new behavior that
overwrites the pre-trained behavior. However, in this
case, we wish to preserve the ability to execute previous
behavior while adding new behavior.

Our approach is to freeze the thespian agent model
and add a module (see Figure 2 right, yellow) with learn-
able weights that operate on the original, frozen model’s
outputs. Since we seek to teach the agent a new char-
acter that is a blend of existing characters, we apply an

attention mechanism across the action logit scores for
each character. This attention module learns to blend the
raw logit scores for each characters to produce a single
final action probability distribution.

Specifically, we adapt the attention module from Peng
et al. [19]—which is used for few-shot learning in LLMs—
to the reinforcement learning setting.2

6.1. Thespian Attention

Let O = [
olookoinvoprev
ofback

]

be the stacked observation component embeddings, It
is fed through a feed-forward network, projecting it to a
new, non-linear representation space,

hO = 𝐿𝑁(𝑊 𝑇
FF2 × 𝛾(𝑊

𝑇
FF1 × O)) (2)

with 𝛾 as a non-linear activation function,𝑊FF1 and𝑊FF2
as trainable weights, and 𝐿𝑁(⋅) is a Layer Norm [23].

The action logits a𝑖 for all characters 𝑐𝑖 ∈ 𝐶 produced

by the frozen thespian agent are stacked as A = [
a1...
a𝑛
]

and also fed through a feed-forward network identical
to Equation 2 to obtain hA. To obtain the final set of
attention scores for each observation we perform a ma-
trix multiplication between hO and hA. We divide by a
constant 𝑚 that applies a temperature-like smoothing
before applying a softmax layer to obtain the matrix of
attention scores,

S = softmax(
hO × hA

𝑚
) (3)

with 𝑐 being some character (pre-trained or few-shot).
The final weighted averaged logits for the action is:

pfinal = softmax(𝛼obs × S𝑇 × A) (4)

where 𝛼obs is a vector of scaling coefficients for each of
olook, oinv, oprev, and ofback, the look, inventory, previous
action, and previous action feedback components of the
state observation, respectively.

𝛼obs is a hyperparameter that allows us to increase the
influence of different parts of the observation. They can
be equal and sum to one to have a uniform averaging
effect, or be used to increase or decrease the contribution
of each component of the state observation. Setting the
coefficients > 1.0 loads greater probability mass onto the
highest-scoring action score logits. This has the effect
of making the agent more “exploitative” when sampling
from the probability distribution over actions. The result
is that the thespian attention learns the optimal weights

2In place of the embedded token sequence, we use the embedded
observation tensors 𝑜𝑡 but do not perform amaxpool over the embed-
ded observations as they are much smaller than the token sequences
used in Peng et all’s model ensemble



to calculate the contribution of each pre-trained character
in determining an action for the new character in the
current state with respect to each observation tensor.

Since the KG-A2C base splits action generation into
verb and object selection, the above process is repeated
for the verb and the object to produce one probability dis-
tribution for the verb and one distribution for the object.
The sampled verb and sampled object are combined using
the KG-A2C template approach described in Section 3.3.

6.2. Few-Shot Training
The traditional actor-critic loss is computed as the differ-
ence between the agent’s predicted value of an action and
the true expected value. However, the thespian agent
produces a real-numbered utility value prediction for
each character. Rather than perform a weighted average
with the attention scores as we did for the action logits,
we take the average of the predicted values of the state
from the new character’s perspective and the predicted
value of the most influential pre-trained character. This
is the pre-existing character that the agent thinks has the
best chance of receiving reward even though the reward
function is for a new character. Thus loss is a function
of how much better the thespian attention can pick an
action for the new character over the best chance if it
had to play a pre-existing character.

The thespian agent can now be trained as before, by
providing a new character reward and an empty prompt.
With the core thespian agent weights frozen, the agent
will retain the ability to respond to existing character
prompts. The thespian agent will learn new weights
in the feed-forward networks that combine the existing
characters action logits. We no longer need to specify
which set of character action logits to sample from. It
will also learn a new prompt for the new character.

7. Few-shot Experiments
The thespian attention uses far fewer parameters than
the core agent. Therefore we test the ability to train the
thespian attention module to learn a new character in
fewer training steps versus training from scratch. Given a
frozen thespian agent pre-trained to respond to the thief
and adventurer prompts, we train a new character—a
“Rogue”—that excels at both thieving and adventuring. To
demonstrate few-shot learning, we limit the total training
steps to 3,000.

We created three variations of the environment:

• Thief-first map: all thief-specific activities are
arranged closer to the start while all adventurer-
specific activities are closer to the exit.

• Adventurer-first map: all adventurer-specific
activities are arranged closer to the start while all
thief-specific activities are closer to the exit.

• Alternating map: the character-specific activi-
ties alternate between thief and adventurer as the
agent progresses farther from the start.

These alternative maps demonstrate robustness to alter-
nating conditions in the environment that require either
knowledge about how to act as a thief or knowledge
about how to act as an adventurer. For all new charac-
ters, the maximum score the agent can achieve is 47 and
all characters share the same exit room. We use the total
score achieved as a measure of how well the thespian
attention allows the agent to learn a new character based
on the pre-trained characters.

7.1. Baselines
We compare two agents:

• Thespian attention agent: a pre-trained thes-
pian agent with frozen weights and the few-shot
attention mechanism.

• Unfrozen thespian agent: the same pre-trained
thespian agent but with unfrozen weights and no
attention mechanism.

Both agents are trained on a new “Rogue” reward,
which rewards the agent for a subset of thief-specific
and adventurer-specific actions.

For the thespian attention agent, we measure the to-
tal “rogue” game score after each step. For the unfrozen
agent, we measure the total “rogue” game score as well
as just the thief score and just the adventurer score.
Whereas the thespian attention agent is frozen and can-
not lose its ability to emulate a thief or adventurer (char-
acter prompt and internal weights are unchanged), the
unfrozen agent may lose its ability to emulate the thief
and adventurer as it trains on the “rogue” reward.

7.2. Results
Figure 4 shows the total cumulative score for the thespian
attention agent and unfrozen agent, averaged across five
training runs each. In all three maps, the thespian atten-
tion agent training a new “rogue” prompt outperforms
the unfrozen agent training a new “rogue” prompt. In
the adventurer-first and alternating maps the thespian
attention agent has converged by 1,500 steps.

The unfrozen agent training a new “rogue” prompt fails
to converge within the allotted time. The unfrozen agent
converges after 15,000 steps, which is 10x slower than the
frozen thespian agent with attention mechanism, though
it does match the performance eventually. However, we
also see that the unfrozen agent quickly loses its ability
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Figure 4: Scores of the thespian attention versus unfrozen agents for each game. The red and blue lines represent the score of
the unfrozen agent on the “Thief” and “Adventurer” games when provided the respective prompt. We see that in all cases, the
unfrozen agent’s performance in the pre-trained characters suffers. In the Adventurer-First and Alternating maps, the
thespian attention converge far sooner than the unfrozen agent. While not yet converged, we also see the thespian attention
train faster than the unfrozen agent.

to emulate the plain thief and plain adventurer. The
unfrozen agent can be trained using a rotation of games
for all three characters. When this is done it takes in
excess of 40,000 steps before it converges on a model that
can play all three characters.

The reason the thespian attention agent does not do
as well on the thief-first map as the others is because of
bias introduced in the pre-training. Because the training
regimen alternates characters, it trains on the “thief” char-
acter last. This makes the thespian agent slightly overfit
to the thief character (relative to the adventurer). While
this might seem like it might give it an advantage on the
thief-first map, in means that it takes longer to encounter
non-thief “rogue” rewards; the encounter of early thief
rewards reinforces this by placing more attention weight
on thief action logits. We see a similar behavior when
we allow the thespian agent to complete an additional
round of training on the “adventurer” character.

8. Ablation Studies
We investigate three alternative ways to incorporate at-
tention into the thespian agent:

• Attention over a direct weighted average of char-
acter prompts.

• Attention over a weighted average of the soft
character prompt plus state observation.

• Attention over action probabilities vs. raw logits.

The first two, which focused on attention over the soft
character prompts in various ways, resulted in agents
that failed to learn a new character. The agent would

choose actions that went with the most attended prompt
and would never achieve blending. This is because the
attention layer would just act as a scalar on the inputs.

The third alternative would have used a softmax layer
to convert action logits to a probability distribution be-
fore being fed into the attention mechanism. In all cases,
this variation was inferior to operating on raw logits. The
softmax conversion of raw logits to a probability distribu-
tion smooths the values, making it harder to discriminate
between actions. Manipulating the logits allows for the
biases of the individual character prompts to be more
faithfully preserved.

9. Conclusions
We make the distinction between character agents and
actor agents. A character agent learns a model of a single
character. An actor, or thespian, agent learns a model of
multiple characters and can take direction through a soft
prompt about which character to emulate. Our formula-
tion of a thespian agent is further able to reason about
which actions would be appropriate to each character.

The production of different action logit scores for dif-
ferent characters allows us to add an additional attention
mechanism that learn new characters that remix previ-
ously known characters in a few-shot fashion. This is
shown by training a new character that can take on the
behavioral characteristics of previously known charac-
ters to respond to new circumstances in the environment.

In the context of text role-playing games, a grand chal-
lenge for AI [24], this work presents a step toward open-
ended agents with disentanglable behavior policies.
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A. Appendix

A.1. LIGHT Map
Figure 5 shows the entire LIGHT map layout used for
experimentation.

A.2. Training Details
While most other hyperparameters are kept the same, we
increase the learning rate while decreasing the value loss
for the thespian attention. Despite the new prompt and
the Attention Module having comparably a smaller num-
ber of trainable parameters, we also train over a much
smaller number of steps to emulate Few-Shot training.
Where thespian agent allowed to train to completion over
10,000 games, we constrain the thespian attention to only
3000 steps, which for a well performing agent could be
potentially 150 games but could also potentially only be
40 games for a nonperforming agent, depending on the
number of steps the agent takes within a game. While we
found a higher learning rate hinders the thespian agent,
for the thespian attention the higher learning rate bene-
fited the agent due to the agent having already learned
and being constrained to a smaller, more optimal set of
actions.

We also lower the coefficient of the value loss as well
as changing how the value is calculated. As the Critic
is frozen, we know it will always output the wrong re-
ward value for any “Adventurer” or “Thief” action that
isn’t included in the new character. This results in large
amounts of unnecessary loss that throws off the fusion
agent during training. However, the value loss cannot
be removed completely as it comprises the vast majority
of the loss due to the pre-training of the thespian agent
prior to the thespian attention.
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